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Abstract

In the current element density-based topology optimization, element stiffness is penalized to yield either solid or void
(or very weak) materials, but low-density elements appear during and even after optimization iterations. Especially
when nonlinear problems involving large deformation are considered, low-density finite elements cause serious numer-
ical problems as their tangent stiffness matrices lose positive definiteness. To completely eliminate the problem caused
by low-density elements, we propose a new method: all finite elements are kept solid throughout the optimization
process; zero-length elastic links are introduced to parameterize inter-element connectivity; the link stiffness is penal-
ized. In this approach, the design variables are defined on the links, and vary from 0 and 1 corresponding to the
unconnected and rigidly-connected states. Since the finite elements used to discretize the analysis domain always remain
solid, typical numerical problems encountered by the standard element density-based formulation disappear. To imple-
ment the present method, several issues such as the handling of the mass constraint and raster imaging are also
investigated.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The topology optimization method originally formulated for linear structural problems has been ex-
panded to various engineering problems. (Bendsøe and Kikuchi (1988), and Bendsøe and Sigmund
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(2003)) Nevertheless, some problems are still difficult to solve by the existing topology optimization formu-
lation. The topology optimization of nonlinear structures, among others, is such a problem, so we aim to
develop an efficient, effective method for the topology optimization of geometrically nonlinear structures.

When geometrically nonlinear structures discretized by finite elements have large deformation, low-stiff-
ness elements can undergo excessive shape distortion and lose the positive definiteness of their tangent stiff-
ness matrices. In this case, the corresponding finite elements are usually referred to as unstable elements. If
this phenomenon occurs, many Newton–Raphson iterations are usually required and no converged solu-
tion may be found unless the convergence criterion is relaxed. When such poorly-converged solutions
are used in an optimization, the optimization process usually slows down considerably while the objective
function exhibits oscillatory behavior.

By noting that these numerical problems result mainly from low-stiffness elements which must be used
within the current practice of topology optimization formulation, we aim at a new topology optimization
formulation to completely eliminate such numerical problems, thus to avoid the occurrence of unstable ele-
ments due to the topology optimization formulation.

In the standard topology optimization formulation set up for both linear and nonlinear problems, the
design variables varying continuously from 0 to 1 are assigned to all finite elements used to discretize a gi-
ven design domain (see Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 2003). To avoid intermediate
densities and obtain black–white images, the element stiffness is then penalized, usually by the SIMP (Solid
Isotropic Material with Penalization) method. Even if one can obtain an optimized design consisting mainly
of void (or very week) and solid materials at the final iteration stage, low-density elements having low stiff-
ness always appear during any topology design optimization process.

Low-density elements (corresponding to low-stiffness elements) alone do not cause serious numerical
problems in linear static topology optimization problems, but they do in nonlinear topology optimization.
If low-density elements, in particular, undergo extremely large deformation, the corresponding element tan-
gent stiffness may become zero or negative, which leads to serious numerical instability problems (Gea and
Luo, 2001; Bruns and Tortorelli, 2001; Bruns and Tortorelli, 2003; Pedersen et al., 2001; Buhl et al., 2000;
Kobayashi et al., 1989; Belytschko et al., 2000; Cho and Jung, 2003).

To explain the numerical problem due to low-density elements, let us consider some numerical result in
Fig. 1. Fig. 1(a) shows an optimized result, which one could obtain for a nonlinear compliance minimiza-
tion problem by the convergence relaxation method (see Pedersen et al., 2001). In the standard element den-
sity-based formulation, void regions within the design boundary in Fig. 1(a) are actually filled with by very
low-density finite elements. If one plots the deformation of the low-density elements near the loading point
at a Newton-Raphson iteration (see Fig. 1(b)), one can immediately see the excessive distortions of such
elements, which cause solution convergence problems. From a computational point of view, these low-
Fig. 1. The result for the end compliance problem using the method in Buhl et al. (2000) (a) a result (b) deformed shape during the
Newton–Raphson iteration.
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density finite elements lose the positive definiteness of their tangent stiffness matrices. We note here that the
excessive distortions and numerical problems appearing in these elements are artificial problems that result
from the current formulation practice of finite element density-based topology optimization.

Within the framework of the current finite element density-based formulation, several approaches, such
as convergence relaxation during the Newton–Raphson iterations by Pedersen et al. (2001) and Buhl et al.
(2000) and the element removal and reintroduction by Bruns and Tortorelli (2003), are developed to
overcome the above-mentioned numerical problems. When the convergence relaxation strategy is used,
the numerical instability problem is ignored, but the strategy still requires a large number of iterations
and often yields incorrect or inaccurate results. Though the element density-based approach is used, the
element removal and reintroduction method can handle the low-density element problems quite
effectively.

Another interesting approach is the displacement-loading method by Cho and Jung (2003). The idea is to
replace the force-loaded problem by an equivalent displacement-loaded problem, in which deformations
even for low-density elements are small enough not to generate numerical instability. Cho and Jung
(2003) presented an equivalent displacement-loading formulation, and verified its effectiveness through sev-
eral case studies. However, it is difficult to apply it to general nonlinear force-loaded problems. For thor-
ough reviews on low-density element problems, see Buhl et al. (2000) and Cho and Jung (2003).

From the above discussion, we see that low-density elements can cause numerical instability in most non-
linear problems. Because of the instability, we tried not use the densities of the finite elements as design vari-
ables, but kept all elements in solid state during the whole topology optimization process. Then, how do we
find an optimal layout? Our idea is to assume that each finite element is connected to adjacent elements by
artificial zero-length elastically deformable links at the interfacing nodes and to find optimal distribution of
the elastic links; if the link stiffness is vanishingly small, then the corresponding node is regarded as being
disconnected and if the link stiffness reaches a certain value, the corresponding node is regarded as being rig-
idly-connected. As in the standard formulation, the intermediate stiffness value can be avoided by penaliza-
tion. In the SIMP approach, an element with an intermediate density may be interpreted as a certain micro
structure. Since the present formulation works with a discretized model, the elastic links may be interpreted
as some structural members connecting adjacent finite elements. Since the stiffness of the link varies, links
having intermediate stiffness may be interpreted as one-dimensional linear elastic springs. In some engineer-
ing applications, elastic links were used to represent the actual system flexibility that cannot be correctly
modeled by the employed finite element model (Chang, 1974; Kim et al., 1995).

It is emphasized again that the finite elements used to discretize the design domain remain solid during
the whole topology optimization process, but only the stiffness of the artificial elastic links varies. Since the
zero-length links have virtually no distortion problem even for large deformations, the numerical instability
encountered in the standard formulation never appears. The price we must pay for this formulation is that
the number of degrees of freedom for analysis increases by approximately four times in two-dimensional
cases because of elastically linked finite elements. However, the present formulation actually takes much
less computation time than the standard formulation, both in the Newton–Raphson iteration and in the
optimization iteration.

For geometrically nonlinear topology optimization problems in consideration, we used the standard to-
tal Lagrangian formulation based on the Green–Lagrangian strain measure. To extract the optimal layout,
the zero-length elastic links needed to be properly interpreted. Before applying the artificial zero-length
elastic link method to nonlinear problems, we first checked its performance in linear problems. The effects
of elastic link stiffness penalization on the optimized results were also examined. Since we employed dis-
placement-based 4-node finite elements, the usual checkerboard problem also occured in the present formu-
lation. We explained how to incorporate the filtering method in the present ECP approach. As numerical
case studies, we considered benchmark nonlinear compliance minimization, compliant mechanism design,
and multiphysics actuator problems.



1986 G.H. Yoon, Y.Y. Kim / International Journal of Solids and Structures 42 (2005) 1983–2009
2. Element connectivity parameterization (ECP)

Consider a finite element discretization of a design domain shown in Fig. 2. If SIMP (Solid Isotropic
Material with Penalization) is used, each finite element has one design variable qe which varies from a small
number e to 1.

In the SIMP formulation, the element stiffness Ke(qe) varies as
KeðqeÞ ¼ qn
eK

Solid
e ð1Þ
where KSolid
e is the element stiffness when the original material property (i.e., qe = 1) is used. The exponent n

is the penalty factor. During topology optimization, elements having low density values or elements with
artificially weak materials appear and these elements cause numerical difficulties when they undergo large
deformation. Note that intermediate-density valued elements including low-density valued elements are
artificial; these elements appear as the result of the converting void–solid discrete problems to continuous
problems to facilitate the optimization process.

Since the appearance of low-density valued elements causes numerical difficulties in nonlinear analysis,
we considered a new way of converting of void–solid discrete problems to continuous problem by using the
element connectivity parameterization.

The key ideas of the proposed parameterization (see Fig. 3) are the followings:

(1) Analysis elements (two-dimensional plane elements in this case) are not used for design parameteriza-
tion. These elements have the original material property throughout the whole design process.

(2) Artificial zero-length elastic links are introduced to determine the element connectivity, thus the layout
of an optimal configuration. If the link stiffness becomes small or large, the adjacent elements are
assumed to be disconnected or connected.

(3) By the use of a set of zero-length one dimensional elastic links, the plane elements can behave properly
for (relatively) large displacement.

To compare the parameterizations by the existing element density SIMP method and the proposed meth-
od, we considered the modeling of a layout configuration by each method. As a typical layout configura-
tion, we simply chose the one shown in Fig. 4(a) without the loss of generality.
Fig. 2. The standard parameterization for topology optimization.



Fig. 3. The proposed design parameterization for topology optimization.
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In the standard element density-based approach, the void region inside a prescribed design domain is
modeled by plane finite elements having weak materials, i.e., low-density elements. In the proposed method,
however, we modeled the layout in Fig. 4(a) by adjusting the stiffnesses of the zero-length elastic links con-
necting plane finite elements. Note that regardless of the layout pattern, the plane finite elements used to
discretize the whole design domain remained to have the original material property. In the proposed
ECP approach, the plane finite elements surrounded by low-stiffness elastic links represented void regions.
Likewise, the plane finite elements connected by high-stiffness elastic links represented the desired layout.
Therefore, the element connectivity was used to express solid or void regions. In this sense, the present for-
mulation may be called the element connectivity-based topology optimization.

Now, we will explain in detail how the element connectivity was expressed by the link stiffness.
Connections i in Fig. 5 represents the global node in the finite element discretization, but the terminology
�connection� will be used to emphasize that the element connectivity is the key concept in the present
formulation.

Since the element connectivity will be designed to find an optimal layout, the design variables are as-
signed to the elastic links. Let cpq be the design variable assigned to the zero-length elastic link connecting
nodes p and q at connection i (see Fig. 5). Since there are six possible link connections, (p,q) can take on
(1,2), (1,3), (1,4), (2,3), (2,4), or (3,4). The design variable cpq takes on a value between cLOW and 1 as:
cpqLOW 6 cpq 6 cpqUPPER ¼ 1 ð2Þ

where cpqLOW is a small positive number (we use cLOW = 0.01 in all problems). When cpq becomes 1, the nodes
p and q are rigidly connected. On the other hand, when cpq becomes cLOW, the nodes p and q are regarded as
being disconnected. To avoid intermediate element connections, we penalize the link stiffness lpqi as
lpqi ¼ l0ðcpqi Þ
n ð3Þ
where l0 is the upper bound of the elastic link simulating the rigid connection and n is the penalty exponent
that plays exactly the same role as that used in the SIMP approach. The theoretical value of the upper
bound l0 must approach infinity. Some care must be taken in choosing the value of l0. This issue will be
discussed later, so we simply state here that the value of l0 used in this work is approximately 10 to 104 times
larger than the diagonal stiffness element of the adjacent plane element.

Since each link has the four degrees of freedom in plane problems (see Fig. 6), the link element stiffness
klinke can be defined as



Fig. 4. Layout modeling: (a) a typical layout needed during topology optimization, (b) the layout modeled by the existing element
density-based SIMP method, and (c) the layout modeled by the proposed zero-length elastic link method.

Fig. 5. Element connectivity by zero-length one-dimensional elastic links at connection i.
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Fig. 6. Link element connecting nodes p and q at connection i.
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where u and F denote the nodal displacement and the nodal force, respectively, and the subscripts x and y

denote the coordinate directions. In Eq. (4a), the link element is assumed to have the same stiffness in the x
and y directions.

Referring to Fig. 6, we introduced six independent link elements (thus six design variables) at each con-

nection, such as klinki,ð12Þ, k
link
i,ð13Þ, k

link
i,ð14Þ, k

link
i,ð23Þ, k

link
i,ð24Þ, k

link
i,ð34Þ. This modeling will be referred to as 6-DV link mod-

eling. On the other hand, one may introduce only one design variable ci by imposing that
ci � c12i ¼ c13i ¼ c14i ¼ c23i ¼ c24i ¼ c34i ð5Þ
This modeling, which is referred to as 1-DV link modeling, reduces the number of design variables and
avoids strip-like link distribution as shall be seen later. We will compare the optimized results between
the 6-DV link modeling and the 1-DV link modeling, but we will mainly use the 1-DV link modeling
approach. 1

2.1. Representation of optimized results by the ECP approach

Since the link is given no length for the sake of accurate structural analysis, it may be difficult to plot the
optimal structural layout corresponding to a given distribution of the design values ci (or c

pq
i ). Here, we pro-

pose a raster imaging scheme to find the structural layout configuration from the given distribution of ci. To
explain the raster imaging scheme, let us consider a distribution of ci in Fig. 7(a). In Fig. 7(a), the values of
hen the 1-DV link modeling technique is used, the link assembly exhibits isotropic behavior (Suzuki, 2003), but the 6-DV link
ly does not.



Fig. 7. Skeleton and raster imaging schemes or a given distribution of the link design variables ci (a) distribution of ci, (b) raster
imaging scheme by Eq. (6), and (c) skeleton imaging scheme (gray levels correspond to the values of ci).
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ci corresponding to the 1-DV modeling technique are listed, but the raster imaging scheme equally applies
to the 6-DV modeling technique.

The raster imaging scheme is demonstrated in Fig. 7(b). In this scheme, the values of the link design vari-
ables ci are distributed to adjacent plane finite elements by simple averaging. Since a finite element is sur-
rounded by four links defined at its nodes (see Fig. 7), one may assign an element density qe as
qe ¼
1

4
ðc1 þ c2 þ c3 þ c4Þ, ð0 6 qe 6 1Þ ð6Þ
To see the rationale behind Eq. (6), we make the following observations. When all ci (i = 1,2,3,4) reach the
upper bound cUPPER = 1, the element surrounded by these links behaves as a solid element as predicted by
Eq. (6). On the other hand, the element surrounded by links with ci = cLOW (i = 1,2,3,4) will behave as a
void element. Likewise, intermediate values of ci surrounding a plane finite element can be properly inter-
preted by Eq. (6). It is worth emphasizing that the transformation between ci and qe is used only for imag-
ing purpose and the plane elements remain solid (qe = 1) throughout all optimization iterations.

It will be also interesting to plot ci directly at the ith connection. For effective visualization of ci, the link
may be treated to have finite lengths (s · hx, s · hy) (s 2 [0, 1]) where hx and hy are the horizontal and vertical
lengths of the adjacent element. If s = 1 is used, one may easily visualize the skeleton of the optimized struc-
ture. Although this representation, which will be called the skeleton imaging representation, is not the pri-
mary method to represent the final result, it may be interesting to see the skeleton image as shown in Fig.
7(c).



Fig. 8. Load distributions of a point force in the present link-based formulations: (a) load applied at connection i, (b) three typical load
distributions when links are introduced.

G.H. Yoon, Y.Y. Kim / International Journal of Solids and Structures 42 (2005) 1983–2009 1991
2.2. Handling of applied loads and mass constraints

In the proposed approach, plane finite elements are connected by elastic links. Therefore, some consid-
erations on point loading may be necessary.

Within the proposed link-based formulation, three typical load distributions illustrated in Fig. 8(b) can
be used. However, the optimized results were virtually independent of the load distribution methods.

Mass constraint handling should also be considered. The design variables are defined on artificial zero-
length elastic links, but the design variables themselves are not directly related to the mass of the solid part
of a design domain. Based on the rationale used for the raster imaging scheme, however, one can define the
density of the plane finite element by Eq. (6). Again, the relation between qe and ci is used for the mass
evaluations, not for analysis.
3. Verification of the proposed method in linear problems

Before applying the proposed element connectivity parameterization method by zero-length elastic links,
we consider applying the ECP method to linear problems. The main motivation to consider is to convey the
proposed idea more easily and to check its validity for the fundamental linear problem. As a case study, we
will use the classical linear compliance minimization problem. For comparison with the present formula-
tion, we state briefly the standard SIMP-based topology optimization formulation for the compliance min-
imization problem.
Min
q

W ðqÞ ¼ FTUðqÞ ¼ UðqÞTKðqÞUðqÞ ð7aÞ

subject to
XNp

e¼1

qeve 6 V � ðV � : prescribed volumeÞ ð7bÞ
where U is the nodal displacement while F is the nodal load. The global stiffness matrix K is assembled as
K ¼

PNp

e¼1keðqeÞ where the element stiffness matrix ke in the standard approach is a function of the element
density qe as
keðqeÞ ¼
Z
ve

BTCðqeÞBdV e
The matrix B relates the nodal displacement and the strain, which can be found in standard text books on
the finite element method. In the SIMP method, the constitutive matrix C is a penalized function of qe (see
Bendsøe and Sigmund, 2003).



1992 G.H. Yoon, Y.Y. Kim / International Journal of Solids and Structures 42 (2005) 1983–2009
Now we will state how the compliance minimization problem is formulated by the present element con-
nectivity parameterization method.
Min
c

W ðcÞ ¼ FTUðcÞ ¼ UðcÞTKðcÞUðcÞ ð8Þ

subject to
XNP

e¼1

qeðcÞve 6 V � ð9Þ
In the present formulation, the stiffness matrix K(c) consists of two parts as
K ¼ Kstructure þ KlinkðcÞ ð10Þ

In Eq. (10), Kstructure is the stiffness matrix obtained by the plane finite element discretization and is inde-
pendent of the design variable c. The matrix Klink(c) is the stiffness matrix resulting from the presence of
zero-length elastic links and is the function of the design variable c. It is noted that for the same finite ele-
ment discretization used to solve Eqs. (7) and (8), the size of U(c) in Eq. (8) is approximately four times
larger than the size of U(q) in Eq. (7). This is because four nodes at every connection have different degrees
of freedom.

The global matrices Kstructure and Klink are simply assembled by means of element stiffness matrices
kstructuree and klinke ðceÞ as
Kstructure ¼
XNp

e¼1

kstructuree ðindependent of cÞ ð11aÞ

Klink ¼
XNe

i¼1

klinki ¼
XNe

i¼1

l0ðciÞ
nklinknominal ð11bÞ
where Ne is the total number of zero-length links.
The sensitivity of the compliance W(c) with respect to ci can be computed simply as
oW
oci

¼ �UT oK
link

oci
U ¼ �uTi

dklinki

dci
ui ¼ � n

ci
uTi k

link
i ui ð12Þ
where the equilibrium condition KU = F is used to obtain the first expression in Eq. (11). As in the element
density-based method, the sensitivity of W(c) with respect to the ith design variable is written only in terms
of the nodal displacement vector ui (having eight degrees of freedom at connection i of Fig. 5) and the stiff-
ness matrix klinki . In fact, Eq. (12) shows how the strain energy (uTi k

link
i ui) of the link at connection i is related

to the sensitivity oW/oci.
To check the performance of the proposed element connectivity parameterization, we will consider the

compliance minimization problem depicted in Fig. 2. For this problem, linear stress and strain measures are
used. The numerical data used are as follows: Lx = 60, Ly = 30, F = 1, Young�s modulus E = 1, Poisson�s
ratio m = 0.3, mass constraint ratio = 30%. For the analysis, the design domain is discretized by 60 · 30 by
four-node bilinear plane finite elements and the elements are then assumed to be connected by elastic links
for the present topology optimization formulation.

Fig. 9 shows the optimized result based on the present element connectivity parameterization method
using zero-length elastic links. Both skeleton and raster images are shown in Fig. 9. The result by the 6-
DV link modeling exhibits strip-like link connectivity and the resulting raster image is somewhat blurred.
These strip-like patterns may give the designer some insight, but we have also employed a simpler 1-DV link
modeling approach to obtain better images and to reduce the number of the design variables. In the future,



Fig. 9. The optimized results by the proposed element connectivity parameterization method for the Michell compliance minimization
problem.
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more investigations of the 6-DV link modeling may find its effectiveness in some applications, but we will
mainly work with the 1-DV link modeling technique throughout this work.

Because four-node displacement bilinear finite elements are employed for analysis (see, Sigmund and
Petersson, 1998), the well-known checkerboard patterns are also formed in the present ECP method. To
avoid the checkerboard formation, the filter used for the standard element density method is extended
for the ECP formulation (see, Sigmund and Petersson, 1998). Specifically, the sensitivity is averaged as
dW
dcC

¼ dW
dcC

þ dW
dcL

þ dW
dcR

þ dW
dcU

þ dW
dcB

� ��
5 ð13Þ
where the meaning of the symbols C, L, R, U, and B can be found in Fig. 10. Modified versions of Eq. (13)
may be used, but Eq. (13) will be used in this work. Obviously, filtering tends to produce larger grey regions
associated with intermediate design variables.

Though the penalty exponent used in Eq. (3) to penalize the link stiffness is expected to have the same
effect as in the SIMP approach, it is worth examining the effect of the exponent on the optimized result. Fig.
11 illustrates how the optimized results change as the exponent n increases. This figure shows that the role
of the penalty exponent in the present ECP approach is identical to that in the SIMP method.

Now we investigate the effect of the upper bound l0 of the elastic link on the solution. In selecting the
value of l0, we note that l0 · cUPPER

n (cUPPER = 1) should be sufficiently large to simulate the rigid connec-
tion between the nodes connected by a given link but moderately large so as not to cause any numerical
problem. At the same time, the link stiffness value of l0 · cLOW

n (cLOW = 0.01) should be sufficient small
enough to simulate no connection between the nodes connected by a given link, but moderately small so



Fig. 10. The used filter for the sensitivity.

Fig. 11. The effects of the link stiffness penalty exponent.

Fig. 12. The effects of the value of the link stiffness upper bound l0 on the optimized solution (In this case, the penalty exponent n = 4,
the value of the diagonal stiffness of the plane finite element=0.494.).
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Fig. 13. The behavior of the optimized designs for varying mass constraint ratios.
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as not to cause any singularity. Therefore, the choice of l0 is independent of the value of n. Several numer-
ical tests have indicated that relatively large values of n around 4 work satisfactorily and the effects of l0 for
n = 4 are shown in Fig. 12.

If the upper bound l0 takes on a very large value, l0 · cLOW
n increases and thus grey areas become larger

in the raster image. Therefore, the value of l0 should be moderately large as in the second case of Fig. 12. To
penalize the last example of Fig. 12, we may adopt a higher penalization n, or a continuation method for n.

Finally, we have also checked if the mass constraints were correctly reflected in the optimized result ob-
tained by the present element connectivity parameterization formulation. As shown in Fig. 13, the increase
in the mass constraint ratio was well reflected in the optimized result, which validated the present mass eval-
uation scheme stated as Eq. (6).
4. Nonlinear analysis using the link modeling technique

Before solving topology optimization problems for geometrically nonlinear structures, we will consider
how effective the present link modeling technique is in solving the geometrically nonlinear response of a
structure consisting of strong and weak materials. This structure may be viewed as a typical layout appear-
ing at intermediate stages during topology optimization process.

We will begin with a brief summary of the total Lagrangian formulation for geometrical nonlinear anal-
ysis and explain how the formulation is changed if the proposed link modeling technique is introduced. To
show the superior performance of the proposed link modeling technique, we will analyze a geometrical non-
linear structure.

4.1. Underlying nonlinear analysis and the link modeling technique

For geometric nonlinear analysis, we will use the total Lagrangian (TL) formulation using the second
Piola–Kirchoff stress and the Green–Lagrangian strain. The TL formulation for geometric nonlinear anal-
ysis is well established, and it is useful to write the key equations for later use. The notation and formula-
tion given in Bathe (1996) will be used in this work.

By denoting the coordinates and displacements of a generic point in a body by xi and ui (i = 1,2,3), we
can write the following relations
txi ¼ 0xi þ tui, tþDtui ¼ tui þ ui ð14Þ

In Eq. (14), the left superscripts t, t + Dt, 0 stand for the time at which the body is observed.
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In total incremental Lagrangian formulation, the principle of the virtual work at time t + Dt can be writ-
ten as
0
tþDtF ¼ tþDtR ð15aÞ

0
tþDtF ¼

Z
0V

0
tþDtSijd0

tþDt�ij d
0V ð15bÞ

tþDtR ¼
Z

0V

tþDtf B
i dui d

0V þ
Z

0Sf

tþDtf S
i du

S
i d

0S ð15cÞ
where 0
tþDtSij is the second Piola–Kirchhoff stress and 0

tþDt�ij is the Green–Lagrangian strain defined as
0
tþDteij ¼

1

2

otþDtui
o0xj

þ otþDtuj
o0xi

þ otþDtuk
o0xi

otþDtuk
o0xj

� �
ð16Þ
The left subscript 0 implies that the quantities of interest are measured with respect to the initial configu-
ration at time 0. In Eq. (15), tþDtf B

i and tþDtf S
i denote the body force and the surface traction at time t + Dt,

respectively. The virtual quantities in Eq. (15) are expressed with the symbol d.
In geometric nonlinear analysis, assuming large displacements but small strains, the equilibrium equa-

tion must be expressed in nonlinear form, equivalently in the incremental form as Eq. (15), but a linear con-
stitutive relation may be used:
0
tþDtSij ¼ Cijkl0

tþDt�kl ð17Þ

Substituting Eq. (17) into Eq. (15) with the following update rules,
0
tþDtSij ¼ 0

tSij þ 0Sij ð18Þ

0
tþDt�ij ¼ 0

t�ij þ 0�ij ð19Þ

where
0�ij ¼ 0eij þ 0gij ð20Þ

0eij ¼
1

2
ð0ui,j þ 0uj,i þ 0

tuk,i0uk,j þ 0uk,i0tuk,jÞ ð21Þ

0gij ¼
1

2
ðt0uk,i0uk,jÞ ð22Þ
one can obtain the linearized form of Eq. (15) as
Z
0V
Cijrs0ersd0eij d0V þ

Z
0V

0
tSijd0gij d

0V ¼ tþDtR�
Z

0V
0
tSijd0eij d0V ð23Þ
Note that the incremental stress and strain are denote by 0Sij and 0�ij and that 0�ij is divided into the linear
part 0gij, and the nonlinear part 0eij. The incremental displacement from tui to

t + Dtui is denoted by 0ui in
Eqs. (21) and (22). Since 0ui (and 0Sij and 0�ij) cannot be determined explicitly because of the nonlinearity
involved, the Newton–Raphson iterative scheme will be used for numerical implementation of Eq. (23).

If the iteration step of the Newton–Raphson method is denoted by k, the displacement is updated as
tþDtuðkÞi ¼ tþDtuðk�1Þ
i þ DuðkÞi ð24Þ
with
tþDtuð0Þi ¼ tui ð25Þ
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If the displacement field is approximated according to the standard displacement-based finite element method,
one may obtain the following system of equations for the nodal displacement DU(k) corresponding to DuðkÞi :
0
tK

ðk�1Þ
L þ 0

tK
ðk�1Þ
NL

� �
DUðkÞ ¼ tþDtR� 0

tþDtFðk�1Þ ð26aÞ

tþDtUðkÞ ¼ tþDtUðk�1Þ þ DUðkÞ ð26bÞ

0
tK

ðk�1Þ
L ¼

Z
0V

0
tB

ðk�1Þ
L

� �T

C0
tB

ðk�1Þ
L d0V ð26cÞ

0
tK

ðk�1Þ
NL ¼

Z
0V

0
tB

ðk�1Þ
NL

� �T

0
tSðk�1Þ

0
tB

ðk�1Þ
NL d0V ð26dÞ

0
tþDtFðk�1Þ ¼

Z
0V

0
tþDtB

ðk�1Þ
L

� �T

0
tþDtbSðk�1Þ

d0V ð26eÞ

0
tþDtSðk�1Þ ¼

0
tþDtSðk�1Þ

11 0
tþDtSðk�1Þ

12 0
tþDtSðk�1Þ

13 0 0 0

0
tþDtSðk�1Þ

21 0
tþDtSðk�1Þ

22 0
tþDtSðk�1Þ

23 0 0 0

0
tþDtSðk�1Þ

31 0
tþDtSðk�1Þ

32 0
tþDtSðk�1Þ

33 0 0 0

0 0 0 0
tþDtSðk�1Þ

11 0
tþDtSðk�1Þ

12 0
tþDtSðk�1Þ

13

0 0 0 0
tþDtSðk�1Þ

21 0
tþDtSðk�1Þ

22 0
tþDtSðk�1Þ

23

0 0 0 0
tþDtSðk�1Þ

31 0
tþDtSðk�1Þ

32 0
tþDtSðk�1Þ

33

2
6666666666664

3
7777777777775

ð26fÞ

0
tþDtbSðk�1Þ

¼ 0
tþDtSðk�1Þ

11 ,0
tþDtSðk�1Þ

22 ,0
tþDtSðk�1Þ

33 ,0
tþDtSðk�1Þ

12 ,0
tþDtSðk�1Þ

23 ,0
tþDtSðk�1Þ

31

h i
ð26gÞ

Rk ¼ DUðkÞ, kRðkÞk 6 eNR ð26hÞ

In Eq. (26), the matrices 0

tþDtBL and 0
tþDtBNL represent the strain–displacement transformation matrices,

and L and NL stand for linear and nonlinear cases. In the present formulation, we use 4-node bilinear plane
elements for displacement field approximation. The matrix C0 denotes the matrix form of the constitutive
relation constructed from cijkl. When the residual RðkÞ satisfies the condition in Eq. (26h), the final displace-
ment bU for a given load is obtained. See Bathe (1996) for more details on the finite element formulation of
geometrical nonlinear analysis.

When the proposed link modeling technique is introduced to the nonlinear analysis, only simple mod-
ification is needed. First, 0

tþDtF in Eq. (15) is divided into two parts as
0
tþDtF ¼ 0

tþDtFstructure þ 0
tþDtFlink ð27Þ
where 0
tþDtFstructure is simply the expression given by Eq. (15b) and 0

tþDtFlink denotes the contribution from
elastic links. Since the elastic links behave linearly, we only have to replace Eq. (26a) by the following
equation:
0
tK

ðk�1Þ
L þ 0

tK
ðk�1Þ
NL þ Klink

� �
DUðkÞ ¼ tþDtR� 0

tþDtFðk�1Þ ð28Þ
and use the remaining Eqs. (26b)–(26h) without being unchanged. It is noted again that the size of DU(k) in
Eq. (28) is not the same as DU(k) in Eq. (26) because four nodes at every connections are assumed
disconnected.
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4.2. Nonlinear numerical analysis using the link approach

To show the superior behavior of the proposed link modeling approach over the convergence relaxation
method by Pedersen et al. (2001) and Buhl et al. (2000), we consider the geometrical nonlinear analysis of
the loaded structures shown in Fig. 14.

To solve the problem depicted in Fig. 14, we will consider three modeling techniques including the pro-
posed link modeling technique, which is shown in Fig. 15. In Figs. 14 and 15, x denotes the region occupied
by the structure, and X, the square domain encompassing x, can be viewed as the design domain if topol-
ogy optimization is considered.

Obviously, the nonlinear analysis by the modeling shown in Fig. 15(a) will give the best result. The mod-
eling technique in Fig. 15(b) has been used in the standard density-based SIMP topology optimization but
often fails to yield converged solution unless the convergence criteria are relaxed (See Pedersen et al. (2001)
and Buhl et al. (2000) for the details on the convergence relaxation scheme.); even if the convergence relax-
ation is employed, the incremental residual RðkÞ (defined in Eq. (26h)) usually fluctuates as shown in Fig.
16(b). This fluctuation results from the fact that some low-stiffness elements (i.e., element with
E = 1.0 · 10�9) have nonpositive-definite tangent stiffness matrices due to excessive deformations in the
elements.

Since Modeling 2 and Modeling 3 can be directly applied to topology optimization problems, the per-
formance of these two modeling techniques will be compared. Unlike Modeling 2, Modeling 3 (The pro-
posed 6-DV link modeling technique) exhibits monotonic convergence behavior as shown in Fig. 16(c).
Even if large displacements occur in some plane finite elements, large strain develops mainly in the link
elements. Therefore, unless the original finite element discretization (i.e., such as the discretization by
Modeling 1) has numerical problems, the present modeling technique does not cause numerical problems
experienced by Modeling 2.

Now we compare the numbers of the Newton-Raphson iterations and the CPU times in Table 1. As
manifested itself in Table 1, the present link modeling technique performs much better than Modeling 2.
A few remarks on the modeling techniques may be needed in conjunction with topology optimization.
When Modeling 3 is employed for topology optimization, the same finite element discretization can be used
throughout the whole optimization process unlike in Modeling 2, and the numerical problems coming from
low-density elements for nonlinear analysis can be avoided. We will show how this modeling technique
works for topology optimization of geometrical nonlinear structures in the next section.
Fig. 14. A geometrical nonlinear structure (E = 1, m = 0.3) under two loads.



Fig. 15. Three modeling techniques and the deformed shapes: (a) Modeling 1 (only x is discretized), (b) Modeling 2 (X is discretized
where the nonstructural region is modeled by weak materials) and (c) Modeling 3 (X is discretized but only x is connected by stiff
links).
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5. Element connectivity parameterization for nonliner problems

5.1. Topology optimization formulation using link modeling

The topology optimization for the compliance minimization of geometrically nonlinear structures can be
written as
Min
c

W ðcÞ ¼ LTtþDtUðcÞ ð29aÞ



Fig. 16. The history of the incremental residualRðkÞ in the Newton–Raphson method for various modeling techniques: (a) Modeling 1,
(b) Modeling 2, and (c) Modeling 3 (proposed link modeling).

Table 1
Comparison of the numerical results by three modeling techniques (convergence for kRðkÞk 6 1:0� 10�7)

Modeling method Displacement at loaded points Newton–Raphson iterations CPU time (s)

F1-loaded F2-loaded

Modeling 1 (�6.013, 8.895) (0.368, �0.532) 14 0.547
Modeling 2 (�6.013, 8.895) (0.368, �0.532) 139 18.06
Modeling 3 (�6.013, 8.895) (0.368, �0.532) 13 2.39
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subject to
XNp

e¼1

qeðcÞve 6 V � ð29bÞ
where the equilibrium condition Eq. (15a) is assumed to be satisfied. The time t + Dt stands for the equi-
librium state for a given load. In Eq. (29), L is a load vector consisting of zeros except for the positions
where loads are applied, and t+DtU(c) denotes the converged displacement of the geometrical nonlinear
analysis.

To facilitate the calculation of oW/oci, it is convenient to use the adjoint variables t+Dtk which satisfy
tþDtKT
tþDtk ¼ L ð30Þ
where t+DtKT is the tangent stiffness matrix at the converged state t + Dt of the geometrical nonlinear anal-
ysis. The definition of t+DtKT is
tþDtKT ¼ �oR

oU

����
converged

¼ 0
tþDtKL þ 0

tþDtKNL þ Klink
� ���

converged
¼ tþDtKstructure þ Klink

� ���
converged

ð31Þ
Now consider the following modified form of W for the sensitivity analysis:
W ¼ LTtþDtUðcÞ þ tþDtkðtþDtR� tþDtFÞ ð32aÞ

oW
oci

¼ LT otþDtUðcÞ
oci

� �
þ tþDtkT

otþDtR

oci
� otþDtFstructure

oci
� otþDtFlink

oci

� �
ð32bÞ

otþDtFstructure

oci
¼ otþDtFstructure

otþDtU

otþDtU

oci
¼ tþDtKstructure

T

otþDtU

oci
ð32cÞ

otþDtFlink

oci
¼ o

oci
½KlinkðcÞtþDtUðcÞ� ¼ KlinkðcÞ o

tþDtUðcÞ
oci

þ oKlinkðcÞ
oci

tþDtUðcÞ

¼ KlinkðcÞ o
tþDtUðcÞ
oci

þ dklinki ðciÞ
dci

tþDtuiðcÞ ð32dÞ
where t+Dtui denotes the displacements of nodes at connection i. Substituting Eq. (32c,d) and ot+DtR/oci = 0
into Eq. (32b) yields
oW
oci

¼ ðLT � tþDtkTtþDtKTÞ
otþDtUðcÞ

oci

� �
� tþDtkTi

dklinki

dci
tþDtuiðcÞ ¼ �tþDtkTj

dklinki

dci
tþDtujðcÞ ð33Þ
The validity of the sensitivity expression in Eq. (33) has been confirmed by comparing the result by Eq. (33)
and the result by the finite difference scheme. As can be seen in Eq. (33), the sensitivity oW/oci is explicitly
affected by the stiffness of the links at connection i.

5.2. Numerical studies

A few benchmark topology optimization problems requiring geometrical nonlinear analyses will be
solved by using the present element connectivity parameterization method. As optimization algorithms,
the optimality criteria method is used for compliance minimization and the method of moving asymptotes
by Svanberg (1987) is used for compliant mechanism and multiphysics problems. Since there are many local
optimal points in the topology optimization problems, different initial guesses could produce different local
optima (see Pedersen et al., 2001). In the present investigations, uniform values of c that satisfy a given mass
constraints are used unless stated otherwise.
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Case 1: Compliance minimization for a center-loaded structure

We begin with the compliance minimization depicted in Fig. 17(a). This problem was worked out by
Buhl et al. (2000) and is perhaps one of difficult problems to solve with the standard SIMP formulation.
We use exactly the same numerical data that were used by Buhl et al. (2000).

The results shown in Fig. 18(a) and (b) are obtained only with 15 and 21 optimization iterations. Com-
pared with 600 iterations in Buhl et al. (2000), the present method requires much less number of optimiza-
Fig. 17. Problem definition of the compliance minimization of geometrically nonlinear structures: (a) Case 1: mass constraint
ratio=10%, domain discretized by 120 · 40 4-node bilinear finite elements, (b) Case 2: mass constraint ratio=50%, domain discretized
by 80 · 20 4-node bilinear finite elements.

Fig. 18. The optimized results obtained by the proposed element connectivity parameterization scheme for the problem depicted in
Fig. 17(a). (a) Without filtering, and (b) with filtering.



Fig. 20. The raster image obtained by the proposed method with filtering at various iteration steps (niter: the iteration number).

Fig. 19. The raster image obtained by the proposed method without filtering at various iteration steps (niter: the iteration number).

Fig. 21. The optimized results obtained by the proposed element connectivity parameterization scheme for the problem depicted in
Fig. 17(b). (a) Without filtering, and (b) with filtering.
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tion iterations and the optimized values Wopt are comparable with those given in Buhl et al. (2000). The
main reason for the substantial reduction in the iteration number is that no unstable element occurs in
Fig. 22. The effect of the additional consideration of the horizontal force in the end compliance minimization problem. (a) Problem
definition. The results for the weighting factors (c1 and c2) equal to (b) (0.25,0.75), (c) (0.5,0.5), and (d) (0.75,0.25).

Fig. 23. The results with the various meshes with the discretization of: (a) 40 · 10, (b) 80 · 20, and (c) 160 · 40.
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the proposed modeling scheme due to zero-length elastic links. Though it was difficult to compare directly
the CPU times by the present method and the method used in Buhl et al. (2000), the present method re-
quires a very small number of optimization iterations and takes short CPU time for a typical geometrical
nonlinear analysis (as seen in Table 1). Figs. 19 and 20 show the raster images obtained by the present ap-
proach with and without filtering. These figures show that meaningful raster images appear even after the
first few iterations.

Case 2: Compliance minimization for an end-loaded problem

As the second case study, the end compliance minimization problem described in Fig. 17(b) is consid-
ered. Although only a vertical tip load should be considered, two loads both in the vertical and horizontal
directions were considered in the existing literature to obtain physically meaningful results.
Fig. 24. The displacement inverter topology optimization and the optimized results by the present method after filtering: (a) problem
definition (Kin = 100N/m, Kout = 400N/m, Fin = 2mN, mass constraint = 30%), (b) the skeleton image, (c) raster image, (d) the
deformed shape, and (e) zoomed view of the encircled region in (d).
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When the present formulation is employed, however, one does not need to consider the artificial hori-
zontal load to obtain meaningful results. The optimized results by the present approach are shown in
Fig. 21. Without using any convergence relaxation or similar treatments, the present method yields satis-
factory results. Nevertheless, it will be interesting to consider the effect of the artificial horizontal force
on the optimal topologies when the present ECP formulation is employed. Fig. 22(a) describes the problem
considered at Fig. 22(b) through Fig. 22(d). The objective function W in this case is treated as the function
for a multiload case where W is replaced by Wmulti = c1WF1

+ c2WF2
(ci: weighting factor). The symbol WFi

is the compliance upon the force Fi shown in Fig. 22. The effects of meshes on the optimized results are
shown in Fig. 23.

Case 3: Compliance mechanism problem

The displacement inverter design problem, which is one of the typical compliant mechanism design prob-
lems, is considered, and the design problem is depicted in Fig. 24(a). A linear version of this problem was
also solved by Yoon et al. (2004) but the results shown in Fig. 24(b)–(e) are obtained with the consideration
of geometrical nonlinear behavior.

In obtaining the results shown in Fig. 24(b)–(e) by the proposed link-based approach, no numerical
instability resulting from the nonpositive-definiteness of the low-density elements is encountered at all.
Since we use the 4-node bilinear finite element, the filtering scheme alone cannot avoid the presence of
the one-point hinge. If one-point hinge controlling methods that are developed by Poulsen (2003) and Yoon
et al. (2004) are employed, hingeless designs may be obtained. However, the application of the hinge-
controlled technique has not been yet incorporated with the present topology optimization formulation.
Fig. 25. The problem definition of the thermal actuator design. (a) Case 4 and (b) Case 5.
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It should be noted again that the grey and white regions shown in Fig. 24(d) and (e) have appeared only in
the raster image, not during the numerical analysis stage.

Cases 4 and 5: Thermal actuator design problems

As Cases 4 and 5, we consider the topology optimization of thermal actuators where elastic deformations
are geometrically nonlinear by Sigmund (2001). The problem definitions for Case 4 and Case 5 are given in
Fig. 26. The optimized result by the present method for Case 4 defined in Fig. 25(a): (a) skeleton image, (b) raster image, (c) deformed
shape and (d) zoomed view of the encircled region in (c).

Fig. 27. The optimized result by the present method for Case 5 defined in Fig. 25(b). (a) Skeleton image, (b) raster image, (c) deformed
shape and (d) zoomed view of the encircled region in (c).
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Fig. 25(a) and (b), respectively. In Fig. 25, the thermal expansion coefficient is denoted by a, and the uni-
form heating of DT = 500K is assumed.

For the thermal actuator design problems, we use the following constitutive relation:
0
tþDtSij ¼ Cð0tþDt�ij � aDTÞ ð34Þ
The optimized results by the present method for Case 4 and Case 5 are shown in Figs. 26 and 27,
respectively. For Case 4, only the half of the design domain is discretized due to the symmetry, but
the result is given in the full scale. As in the previous cases, no convergence problem occurs when
the proposed formulation is employed for topology optimization involving geometrically nonlinear
analysis.
6. Concluding remarks

A new formulation for topology optimization of geometrically nonlinear structures is presented. To
avoid the numerical instability of low-stiffness finite elements appearing in the standard element density-
based SIMP formulation, topology optimization is reformulated as the problem to find the optimal in-
ter-element connectivity distribution while the finite elements discretizing the design domain are made to
have the stiffness of real materials throughout the optimization process. The following is the summary
of the findings through this investigation.

1. The introduction of elastic links was very effective in representing the degree of inter-element
connectivity.

2. Both linear and nonlinear responses of structures were accurately predicted. Subsequently, physically
meaningful optimal results were found without artificial numerical treatments. The suggested value of
the link stiffness l0 is (100 � 1000)Eh, where E is Young�s modulus and h is the size of plane finite
elements.

3. By the link-based modeling, low-stiffness links also appear but do not cause any instability problems
because they are one-dimensional structural elements.

4. Since no numerical instability problem occurs during topology optimization by the present element con-
nectivity parameterization method, the initial design domain discretization can be used throughout the
whole optimization process.

5. The total number of degrees of freedom for numerical analysis increases almost four times in two-dimen-
sional problems. Therefore, the proposed method in the linear structural problems is not as efficient as
the SIMP method. However, the present method substantially reduces the CPU time for the Newton–
Raphson iterative procedure and also takes much smaller optimization iterations. Therefore, the total
solution speedup for geometrically nonlinear problems is significant.

6. For benchmark design problems involving geometrically nonlinear analysis, the present method has per-
formed well.

7. Regardless of the introduction of the elastic links, the overall solution behavior is controlled by the finite
element mesh used to discretize the design domain; for instance, checkerboard patterns appear when 4-
node bilinear finite elements are used. However, checkerboard pattern formation and similar problems
can be controlled by existing techniques such as the filtering technique.

8. Though the proposed zero-length elastic link modeling technique was primarily devised to deal with the
topology optimization involving geometrical nonlinear behavior, the technique is expected to be also
useful for other classes of topology optimization problems.
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